Warning: file_put_contents(cache/08ff6bf8a254878ea6f33137ecd80834): failed to open stream: No space left on device in /www/wwwroot/m.online345.com/fan/1.php on line 349
潍坊青州市青少年坏习惯矫正学校靠谱推荐,未来会带来怎样的机会?
潍坊青州市青少年坏习惯矫正学校靠谱推荐_,未来会带来怎样的机会?

潍坊青州市青少年坏习惯矫正学校靠谱推荐,未来会带来怎样的机会?

更新时间: 浏览次数:04



潍坊青州市青少年坏习惯矫正学校靠谱推荐,未来会带来怎样的机会?各观看《今日汇总》


潍坊青州市青少年坏习惯矫正学校靠谱推荐,未来会带来怎样的机会?各热线观看2025已更新(2025已更新)


潍坊青州市青少年坏习惯矫正学校靠谱推荐,未来会带来怎样的机会?售后观看电话-24小时在线客服(各中心)查询热线:













枣庄薛城区不听话叛逆教育学校:(1)
















潍坊青州市青少年坏习惯矫正学校靠谱推荐,未来会带来怎样的机会?:(2)

































潍坊青州市青少年坏习惯矫正学校靠谱推荐维修后设备性能提升建议:根据维修经验,我们为客户提供设备性能提升的专业建议,助力设备性能最大化。




























区域:毕节、菏泽、潍坊、德宏、贺州、林芝、石家庄、广州、铜川、巴彦淖尔、德阳、玉树、内江、滁州、信阳、泸州、汕尾、吕梁、青岛、黔西南、云浮、丹东、襄樊、怒江、南昌、曲靖、漳州、十堰、阳江等城市。
















枣庄市中区厌学纠正学校










济宁市汶上县、文昌市龙楼镇、东莞市南城街道、娄底市涟源市、临夏永靖县、海北门源回族自治县、遵义市正安县











内蒙古巴彦淖尔市乌拉特中旗、内蒙古通辽市扎鲁特旗、赣州市龙南市、天津市滨海新区、三门峡市湖滨区、信阳市商城县、三亚市崖州区、内蒙古锡林郭勒盟二连浩特市








贵阳市南明区、广西河池市巴马瑶族自治县、济源市市辖区、宝鸡市凤翔区、台州市温岭市、保亭黎族苗族自治县什玲、潍坊市寿光市、南阳市邓州市、广西河池市金城江区、韶关市新丰县
















区域:毕节、菏泽、潍坊、德宏、贺州、林芝、石家庄、广州、铜川、巴彦淖尔、德阳、玉树、内江、滁州、信阳、泸州、汕尾、吕梁、青岛、黔西南、云浮、丹东、襄樊、怒江、南昌、曲靖、漳州、十堰、阳江等城市。
















营口市站前区、内蒙古赤峰市元宝山区、广西梧州市万秀区、酒泉市瓜州县、甘孜道孚县、南京市雨花台区、丹东市振兴区、广州市花都区、盐城市滨海县
















湖州市南浔区、阜阳市阜南县、雅安市荥经县、平凉市庄浪县、楚雄大姚县、重庆市黔江区  揭阳市普宁市、果洛达日县、河源市紫金县、辽源市西安区、金昌市永昌县、广西桂林市雁山区、直辖县仙桃市、昆明市嵩明县、曲靖市富源县
















区域:毕节、菏泽、潍坊、德宏、贺州、林芝、石家庄、广州、铜川、巴彦淖尔、德阳、玉树、内江、滁州、信阳、泸州、汕尾、吕梁、青岛、黔西南、云浮、丹东、襄樊、怒江、南昌、曲靖、漳州、十堰、阳江等城市。
















汉中市勉县、成都市金堂县、咸阳市武功县、玉树杂多县、赣州市定南县、甘南舟曲县、忻州市定襄县、本溪市明山区、湘西州永顺县
















宜春市高安市、内蒙古包头市固阳县、阿坝藏族羌族自治州黑水县、玉溪市江川区、泉州市金门县、泸州市叙永县、朝阳市建平县、衢州市龙游县、福州市长乐区




鹤壁市淇县、洛阳市老城区、阜新市细河区、宜春市靖安县、宜宾市筠连县、清远市连山壮族瑶族自治县、广西北海市银海区、红河建水县、丽水市遂昌县 
















眉山市彭山区、湘西州凤凰县、衢州市柯城区、毕节市黔西市、凉山普格县、锦州市黑山县、汕尾市陆丰市、三明市将乐县、德宏傣族景颇族自治州梁河县




株洲市渌口区、海西蒙古族德令哈市、鹤岗市南山区、景德镇市昌江区、长沙市浏阳市、铜仁市石阡县、青岛市市南区、内蒙古乌兰察布市丰镇市、宜宾市叙州区




无锡市锡山区、沈阳市于洪区、岳阳市平江县、驻马店市确山县、白山市长白朝鲜族自治县、福州市永泰县、天津市南开区
















定安县龙河镇、徐州市贾汪区、忻州市岢岚县、青岛市崂山区、资阳市安岳县、绵阳市安州区、咸宁市通山县、齐齐哈尔市依安县
















长春市双阳区、邵阳市新宁县、成都市新津区、株洲市荷塘区、沈阳市铁西区

  低成本、上线快、易调试,可在特定任务上反超通用大模型

  轻量化小模型兴起,中小企业也能搭上AI“快车”

  阅读提示

  随着人工智能快速发展迭代,一些企业开始押注小模型。相较大模型,低成本、上线快、易调试的小模型,以更高的性价比为中小企业和个人用户提供了打开人工智能大门的钥匙。

  近两年,人工智能快速发展迭代,大语言模型如雨后春笋般涌现,文本生成、文生图、语音处理、代码处理、视频处理等生成式人工智能走进人们的生活。同时,一些企业开始发力研发可在电脑、手机端训练的轻量化小模型。

  “我们需要高铁、飞机、游轮等大型交通工具,也需要私家轿车、公交车,以及摩托车、自行车等小型交通工具。因为在不同场景下,不同人群有不同需求。”在青岛自然语义公司联合创始人、首席架构师孙燕群看来,满足特定市场的需求,是专而精的小模型兴起的重要原因及其存在的价值。

  今年3月,自然语义研发的Euler模型通过中央网信办生成式人工智能服务备案。不同于大模型动辄千亿级的参数量,Euler的参数量只有2.5B(25亿),是典型的轻量化小模型。相较于大模型,小模型有何特点?应用前景如何?记者对此进行了采访。

  低成本、易调试的端侧小模型兴起

  关于小模型,目前并没有明确定义。孙燕群表示,在行业内,参数量低于100B的模型就算比较小的模型。在实际应用时,要想在笔记本电脑端实现微调,模型参数量一般在3B左右。

  相较大模型,小模型在算力消耗、使用成本方面更具优势。具体来说,一是训练和推理所需的硬件资源较少,使得成本较低;二是使用更便捷,可在手机、电脑、物联网设备等计算场景中实时运行;三是结构简单,开发者能快速定位问题,易于调试。

  记者了解到,随着大模型的比拼日益激烈,一些企业开始押注小模型。2024年8月,微软和英伟达就相继发布过小型语言模型。国内不少企业也开始研发在“断网、弱网”环境下,让各种智能终端具备自主思考能力的端侧小模型。例如,在今年3月举办的中关村论坛年会期间,北京的面壁智能公司就发布了应用于汽车智能座舱的纯端侧超级智能助手。今年1月,广东佛山移动牵头联合40家单位成立佛山市AI小模型产业联合体,致力于通过人工智能小模型提供个性化服务,助力企业完成智能化升级。

  “小模型让我们实现了与科技巨头们的错位竞争。”提到小模型的具体应用场景,孙燕群举例说,Euler通过备案后,已经开始面向中小企业和个人用户提供服务。如与山东某市级档案馆合作,上线了档案模型;与青岛当地一家仪器仪表设备公司合作,开发了内网技术相关的模型。

  退而求其次后的“主动作为”

  “客观来说,大模型的能力强于小模型,一个参数量2.5B的模型无论如何都不可能超过200B模型的算力。”孙燕群直言,这也是大公司都在做千亿级模型的原因。模型小,神经网络参数就少,容纳的知识量不够,“体现在文本生成上,就是容易出现上下文不连贯的情况”。

  自然语义最初的目标并不是小模型。2019年底,该公司考虑要做大模型,但由于发展方向不明朗,同时在购买高算力GPU上面临资金和货源压力,因此未能实施。

  “没想到,仅过了两年时间,国外的大模型就发布了。”孙燕群回忆说,后来随着越来越多大企业涌入大模型赛道,作为基础硬件的高算力GPU价格水涨船高。“那段时间,听说哪里有GPU,我们就坐飞机去买,常常是提前交了定金也不一定能买到。”最终,公司用10多台设备组成一个算力集群,能支撑做出7B参数的模型。

  为了在现有设备基础上尽可能提高参数,自然语义公司工程师经过头脑风暴,想出了新的分词方式,以及将向量计算从实数空间转换到复空间等各种办法。“经过模型训练,这些技术都达到了比较好的效果,能让一个3B参数的模型,达到了150B参数模型60%左右的能力。”孙燕群表示。

  中国信息通信研究院人工智能研究所副总工程师王蕴韬告诉记者,小模型之所以能在“瘦身”后仍保持可观性能,得益于一系列成熟的模型压缩与高效架构技术,包括剪枝、量化、知识蒸馏、设计先天高效的网络架构等。

  让“小身材”跑出“大能量”

  “小模型发展大有可为。”在王蕴韬看来,未来面向特定应用场景的小模型,潜力将会进一步释放。以AI终端为代表的应用形态及产品服务,将成为小模型释放大能力的主战场。

  关于小模型的应用前景,王蕴韬进一步解释,一是为离线办公、文档摘要、私密对话等场景铺平道路;二是随着处理器架构和神经处理单元技术的应用,手机、车载和物联网设备将成为小模型的天然舞台;三是在垂直领域与“专精特新”行业,如金融、医疗、法律、教育等已出现6B及以下参数的定制模型,成本低、上线快,可在特定任务上反超通用大模型。

  “市场关心的是能否解决实际问题,不关心背后模型细节,能够与场景深度结合,拥有行业知识,尤其是可信的小模型至关重要。”王蕴韬说。

  从用户端来看,在实际应用中,小模型的性价比优势也十分明显。北京某互联网公司算法工程师张先生向记者表示,在现有技术条件下,想要在本地部署大模型存在一定难度。“专业GPU芯片价格太高,无法应用到低价格的终端上,如手机、机器人等配备的芯片就无法撑起大模型。另外,这些终端所配备的电池,往往也支撑不了高性能芯片的耗电等。”张先生表示,这些硬件性能有限的终端,更适合小模型施展。

  王蕴韬分析认为,未来将是大小模型混合的系统范式。“云端大模型负责通用推理,端侧小模型承担即时响应与私域数据处理。”他还强调,小模型并非“大模型的低配版”,而是面向资源受限环境与专用任务的高性价比解法。通过配合端云混合部署和行业数据精调,企业完全可以让“小身材”跑出“大能量”,在AI商业落地的下一程中获得确定性收益。(工人日报 记者 陶稳) 【编辑:惠小东】

相关推荐: