莱芜莱城区初一孩子叛逆怎么办_,是否能引导人们的认知?

莱芜莱城区初一孩子叛逆怎么办,是否能引导人们的认知?

更新时间: 浏览次数:500


莱芜莱城区初一孩子叛逆怎么办,是否能引导人们的认知?各热线观看2025已更新(2025已更新)


莱芜莱城区初一孩子叛逆怎么办,是否能引导人们的认知?售后观看电话-24小时在线客服(各中心)查询热线:













温州市苍南县、广安市邻水县、朔州市右玉县、遵义市播州区、滁州市来安县、阜新市太平区、双鸭山市饶河县、伊春市汤旺县
清远市连南瑶族自治县、鹤壁市淇滨区、武威市天祝藏族自治县、平顶山市宝丰县、毕节市七星关区、东方市四更镇
绵阳市三台县、遂宁市射洪市、重庆市永川区、洛阳市新安县、巴中市平昌县、湘潭市岳塘区、凉山会东县、衡阳市衡东县、广西崇左市宁明县、嘉峪关市峪泉镇
















周口市西华县、文昌市文城镇、上海市浦东新区、陵水黎族自治县提蒙乡、德阳市广汉市、重庆市九龙坡区、周口市商水县、定西市岷县、自贡市荣县、巴中市恩阳区
延安市子长市、湘西州保靖县、济宁市金乡县、澄迈县桥头镇、黔南罗甸县、扬州市高邮市、广西贵港市港南区
咸阳市三原县、临夏永靖县、襄阳市南漳县、商丘市民权县、咸阳市永寿县、内江市资中县






























株洲市渌口区、海西蒙古族德令哈市、鹤岗市南山区、景德镇市昌江区、长沙市浏阳市、铜仁市石阡县、青岛市市南区、内蒙古乌兰察布市丰镇市、宜宾市叙州区
杭州市桐庐县、邵阳市邵东市、铁岭市调兵山市、雅安市汉源县、双鸭山市宝清县、天津市南开区
台州市临海市、儋州市东成镇、金华市永康市、德阳市罗江区、厦门市思明区、三明市三元区、内蒙古赤峰市巴林右旗




























丽水市青田县、潍坊市安丘市、文山文山市、内蒙古锡林郭勒盟太仆寺旗、南京市玄武区、泸州市江阳区、黔东南剑河县、上饶市铅山县、广州市花都区、青岛市胶州市
盐城市建湖县、内蒙古鄂尔多斯市准格尔旗、湛江市坡头区、平顶山市汝州市、龙岩市永定区、安庆市怀宁县、曲靖市陆良县、普洱市思茅区
吉林市桦甸市、攀枝花市米易县、南充市仪陇县、衡阳市衡山县、滁州市南谯区、黔西南兴仁市、白银市景泰县















全国服务区域:七台河、三门峡、楚雄、大同、赤峰、南京、柳州、聊城、广安、塔城地区、资阳、新疆、汉中、白城、阿拉善盟、海东、益阳、常州、乐山、沧州、宁德、济南、衡阳、巴中、泸州、锡林郭勒盟、东营、拉萨、南通等城市。


























赣州市石城县、辽阳市文圣区、泰安市东平县、内蒙古鄂尔多斯市东胜区、合肥市肥西县、阿坝藏族羌族自治州小金县、佛山市顺德区、天水市麦积区、咸阳市渭城区
















东方市江边乡、凉山美姑县、滁州市定远县、内蒙古呼和浩特市土默特左旗、杭州市上城区、焦作市山阳区、安康市平利县、鸡西市恒山区、内江市隆昌市、铜川市印台区
















梅州市大埔县、西宁市城西区、淮安市盱眙县、长治市黎城县、绥化市安达市
















临夏临夏县、怀化市中方县、泉州市南安市、广西河池市环江毛南族自治县、北京市怀柔区、鹤岗市绥滨县、湛江市赤坎区、辽阳市灯塔市、温州市乐清市  内江市威远县、运城市夏县、绍兴市新昌县、曲靖市罗平县、洛阳市洛龙区
















黔东南从江县、西双版纳景洪市、韶关市乳源瑶族自治县、周口市郸城县、澄迈县老城镇、齐齐哈尔市昂昂溪区
















上海市金山区、锦州市黑山县、恩施州利川市、郑州市荥阳市、舟山市定海区、怀化市辰溪县、重庆市黔江区、福州市闽清县
















长沙市宁乡市、南充市南部县、驻马店市正阳县、大庆市龙凤区、忻州市定襄县、青岛市莱西市、广西河池市巴马瑶族自治县、邵阳市新宁县




开封市尉氏县、临沂市兰陵县、肇庆市封开县、运城市垣曲县、东莞市东坑镇  运城市平陆县、绥化市北林区、琼海市嘉积镇、杭州市上城区、宁夏中卫市中宁县、襄阳市襄州区、宜宾市南溪区、潍坊市昌乐县、宁夏石嘴山市大武口区
















十堰市张湾区、白沙黎族自治县邦溪镇、乐山市马边彝族自治县、晋中市祁县、白沙黎族自治县金波乡、怀化市新晃侗族自治县、连云港市东海县、苏州市姑苏区、内蒙古乌海市海勃湾区、沈阳市辽中区




青岛市莱西市、乐东黎族自治县抱由镇、温州市永嘉县、宜昌市当阳市、南昌市安义县、杭州市淳安县、乐东黎族自治县大安镇




黄南尖扎县、哈尔滨市松北区、武汉市汉南区、德州市武城县、盐城市滨海县、重庆市大渡口区、湛江市遂溪县、云浮市郁南县、玉溪市红塔区、东方市东河镇
















忻州市宁武县、宁波市北仑区、深圳市南山区、通化市二道江区、大兴安岭地区松岭区、西安市鄠邑区
















玉溪市新平彝族傣族自治县、绵阳市盐亭县、常德市澧县、武汉市江夏区、德宏傣族景颇族自治州芒市

  低成本、上线快、易调试,可在特定任务上反超通用大模型

  轻量化小模型兴起,中小企业也能搭上AI“快车”

  阅读提示

  随着人工智能快速发展迭代,一些企业开始押注小模型。相较大模型,低成本、上线快、易调试的小模型,以更高的性价比为中小企业和个人用户提供了打开人工智能大门的钥匙。

  近两年,人工智能快速发展迭代,大语言模型如雨后春笋般涌现,文本生成、文生图、语音处理、代码处理、视频处理等生成式人工智能走进人们的生活。同时,一些企业开始发力研发可在电脑、手机端训练的轻量化小模型。

  “我们需要高铁、飞机、游轮等大型交通工具,也需要私家轿车、公交车,以及摩托车、自行车等小型交通工具。因为在不同场景下,不同人群有不同需求。”在青岛自然语义公司联合创始人、首席架构师孙燕群看来,满足特定市场的需求,是专而精的小模型兴起的重要原因及其存在的价值。

  今年3月,自然语义研发的Euler模型通过中央网信办生成式人工智能服务备案。不同于大模型动辄千亿级的参数量,Euler的参数量只有2.5B(25亿),是典型的轻量化小模型。相较于大模型,小模型有何特点?应用前景如何?记者对此进行了采访。

  低成本、易调试的端侧小模型兴起

  关于小模型,目前并没有明确定义。孙燕群表示,在行业内,参数量低于100B的模型就算比较小的模型。在实际应用时,要想在笔记本电脑端实现微调,模型参数量一般在3B左右。

  相较大模型,小模型在算力消耗、使用成本方面更具优势。具体来说,一是训练和推理所需的硬件资源较少,使得成本较低;二是使用更便捷,可在手机、电脑、物联网设备等计算场景中实时运行;三是结构简单,开发者能快速定位问题,易于调试。

  记者了解到,随着大模型的比拼日益激烈,一些企业开始押注小模型。2024年8月,微软和英伟达就相继发布过小型语言模型。国内不少企业也开始研发在“断网、弱网”环境下,让各种智能终端具备自主思考能力的端侧小模型。例如,在今年3月举办的中关村论坛年会期间,北京的面壁智能公司就发布了应用于汽车智能座舱的纯端侧超级智能助手。今年1月,广东佛山移动牵头联合40家单位成立佛山市AI小模型产业联合体,致力于通过人工智能小模型提供个性化服务,助力企业完成智能化升级。

  “小模型让我们实现了与科技巨头们的错位竞争。”提到小模型的具体应用场景,孙燕群举例说,Euler通过备案后,已经开始面向中小企业和个人用户提供服务。如与山东某市级档案馆合作,上线了档案模型;与青岛当地一家仪器仪表设备公司合作,开发了内网技术相关的模型。

  退而求其次后的“主动作为”

  “客观来说,大模型的能力强于小模型,一个参数量2.5B的模型无论如何都不可能超过200B模型的算力。”孙燕群直言,这也是大公司都在做千亿级模型的原因。模型小,神经网络参数就少,容纳的知识量不够,“体现在文本生成上,就是容易出现上下文不连贯的情况”。

  自然语义最初的目标并不是小模型。2019年底,该公司考虑要做大模型,但由于发展方向不明朗,同时在购买高算力GPU上面临资金和货源压力,因此未能实施。

  “没想到,仅过了两年时间,国外的大模型就发布了。”孙燕群回忆说,后来随着越来越多大企业涌入大模型赛道,作为基础硬件的高算力GPU价格水涨船高。“那段时间,听说哪里有GPU,我们就坐飞机去买,常常是提前交了定金也不一定能买到。”最终,公司用10多台设备组成一个算力集群,能支撑做出7B参数的模型。

  为了在现有设备基础上尽可能提高参数,自然语义公司工程师经过头脑风暴,想出了新的分词方式,以及将向量计算从实数空间转换到复空间等各种办法。“经过模型训练,这些技术都达到了比较好的效果,能让一个3B参数的模型,达到了150B参数模型60%左右的能力。”孙燕群表示。

  中国信息通信研究院人工智能研究所副总工程师王蕴韬告诉记者,小模型之所以能在“瘦身”后仍保持可观性能,得益于一系列成熟的模型压缩与高效架构技术,包括剪枝、量化、知识蒸馏、设计先天高效的网络架构等。

  让“小身材”跑出“大能量”

  “小模型发展大有可为。”在王蕴韬看来,未来面向特定应用场景的小模型,潜力将会进一步释放。以AI终端为代表的应用形态及产品服务,将成为小模型释放大能力的主战场。

  关于小模型的应用前景,王蕴韬进一步解释,一是为离线办公、文档摘要、私密对话等场景铺平道路;二是随着处理器架构和神经处理单元技术的应用,手机、车载和物联网设备将成为小模型的天然舞台;三是在垂直领域与“专精特新”行业,如金融、医疗、法律、教育等已出现6B及以下参数的定制模型,成本低、上线快,可在特定任务上反超通用大模型。

  “市场关心的是能否解决实际问题,不关心背后模型细节,能够与场景深度结合,拥有行业知识,尤其是可信的小模型至关重要。”王蕴韬说。

  从用户端来看,在实际应用中,小模型的性价比优势也十分明显。北京某互联网公司算法工程师张先生向记者表示,在现有技术条件下,想要在本地部署大模型存在一定难度。“专业GPU芯片价格太高,无法应用到低价格的终端上,如手机、机器人等配备的芯片就无法撑起大模型。另外,这些终端所配备的电池,往往也支撑不了高性能芯片的耗电等。”张先生表示,这些硬件性能有限的终端,更适合小模型施展。

  王蕴韬分析认为,未来将是大小模型混合的系统范式。“云端大模型负责通用推理,端侧小模型承担即时响应与私域数据处理。”他还强调,小模型并非“大模型的低配版”,而是面向资源受限环境与专用任务的高性价比解法。通过配合端云混合部署和行业数据精调,企业完全可以让“小身材”跑出“大能量”,在AI商业落地的下一程中获得确定性收益。(工人日报 记者 陶稳) 【编辑:惠小东】

相关推荐: